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Do maternal cells trigger or perpetuate autoimmune diseases in 
children?
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Abstract
The placental barrier is not the impenetrable wall that it was once presumed to be. During
pregnancy, fetal cells pass into the mother, where they persist for decades after the pregnancy,
leading to fetal microchimerism (FMc). Maternal cells also pass into the fetus, where they can
persist long after birth of the child into adulthood, leading to maternal microchimerism(MMc).
FMc and MMc represent foreign cells, and thus have been implicated in the pathogenesis of
autoimmune diseases that resemble graft-versus-host disease after stem cell transplantation. FMc,
hypothesized to contribute to the high predisposition of autoimmune diseases in women, has been
reviewed recently. In patients who have never been pregnant, (children, males, and nulliparous
females), MMc may represent the foreign cells that initiate or perpetuate chronic inflammatory
disease.

Is persistent maternal microchimerism (MMc) normal in 
infancy?
In human pregnancy, cell traffic during pregnancy is bi-
directional, with maternal cells passing into the fetal cir-
culation and fetal into the maternal. Maternal cells can
engraft in infants with severe combined immunodefi-
ciency (SCID), unbothered by a defensive host immune
system [1-7]. In a large cohort of infants with SCID, MMc
was detected in 40%, and graft-versus-host disease
(GVHD) developed in 76% [7]. Both maternal T and B
lymphocytes have been described engrafting into immun-
odeficient infants [1,3-7], but unlike stem cell transplan-
tation, when donor cells functionally replace the host
immune system, maternal cells physically replace but do
not function for the child's immune system. The func-
tional capacity of chimeric maternal cells is not well-
defined. In vitro, chimeric maternal cells respond poorly
to specific mitogens such as antigen or allogenic stimula-

tor cells [1,5,6]. Chimeric maternal T cells do respond to
non-specific mitogens such as IL-2, anti-CD3 antibodies
or PHA, and maternal cell lines have been grown from the
blood of immunodeficiency patients. These maternal cell
lines were able to proliferate normally and express mater-
nal HLA molecules [4-7]. Although T lymphocyte activa-
tion markers have been detected on chimeric maternal
lymphocytes and MMc has been associated with GVHD,
40% of patients with detectable MMc never developed
GVHD, suggesting that regulatory mechanisms control
the engrafted maternal lymphocytes. One reason for the
limited ability of maternal T lymphocytes to respond to
specific antigens may be the limited T cell receptor reper-
toire in engrafted maternal cells [6]. Thus, a limited
number of maternal T lymphocyte clones may be trans-
ported into the fetus and expand in response to non-spe-
cific stimuli. On the other hand, a random selection of
maternal cells may travel to the fetus and specific clones
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expand by an antigenic stimulus yet to be identified, lead-
ing to clonal over-representation in the total population.
The rate of persistent MMc in SCID patients is not known,
because mortality is high, and most patients now receive
stem cell transplants.

Whereas in SCID infants maternal cells make up the
majority of lymphocytes, MMc is found at lower levels in
immunocompetent infants. Maternal cells have been esti-
mated at a rate of 0.02–5% in cord blood [8-10]. Early
studies detected MMc in cord blood by labeling maternal
blood cells with a fluorescent dye or Chromium-51 and
injecting them back into the mother hours before delivery
[11,12]. In non-invasive studies using fluorescence in situ
hybridization (FISH) with probes to the X- and Y-chromo-
somes, maternal cells with two X-chromosomes were
found in 20% of cord blood samples from male infants
[8]. MMc was found in both the CD8+ and CD34+ sub-
sets, suggesting the transfer of maternal stem cells. In stud-
ies using more sensitive polymerase chain reaction (PCR)-
based assays, maternal DNA was found in 24–100% of
cord blood samples [10,13-15]. Maternal DNA has been
reported in the fetal circulation as early as 13 weeks gesta-
tion in blood samples taken prior to elective terminations
[9,10]. By 20–33 weeks gestation, 53% of fetal blood sam-
ples harbored MMc [16]. Lo, et. al. developed quantitative
techniques to study bi-directional traffic, and found
maternal-to-fetal cell transfer was common, though less
frequent than fetus to mother, and at lower levels [10].

Is persistent maternal microchimerism (MMc) normal after 
infancy?
Maternal cells derived during gestation are not necessarily
eliminated by the child's immune system early in life, but
can persist into adult life. The original study suggesting
that MMc can persist long after birth used PCR for non-
inherited non-shared maternal HLA alleles[17]. In men,
FISH for X- and Y-chromosomes was also used to detect
female cells (presumed to be maternal). By these two
methods MMc was detected in 55% of subjects, as young
as nine years old and as old as 49 years. It has since been
confirmed by others that a low level of maternal cells can
create a state of MMc in the child persisting for decades
[18,19]. The levels of MMc in these studies were only
roughly estimated until Lo and Lambert, et. al., developed
a panel of real-time quantitative PCR (Q-PCR) assays spe-
cific for highly polymorphic HLA alleles that could be
used to accurately measure a low level of maternal DNA
by targeting maternal HLA alleles not shared by the child
[10,20]. Eight different assays were originally shown to be
specific by testing on a panel of HLA-specific cell lines,
and to have the sensitivity to detect one genome equiva-
lent (gEq) of chimeric DNA in 100,000 gEq of host
genomic DNA. By assaying genomic DNA isolated from
peripheral blood mononuclear cells, evidence for MMc

was found in 22% of healthy females aged 13–62 years.
The levels of MMc ranged from 0 to 55 gEq/million host
gEq. Thus, MMc appears to be common in healthy chil-
dren and adults.

What are the phenotypes of chimeric maternal cells?
The phenotypes of maternal cells in the blood, however,
were not known until Loubière, et. al. assayed MMc in
genomic DNA isolated from blood cell subsets sorted by
flow cytometry. [21] By the same Q-PCR assays, maternal
cells were found with slightly increased frequency in sub-
sets, suggesting that they may be concentrated in one cell
line or another. The levels of MMc were higher than levels
in total peripheral blood cells, rising to as high as 360 per
million in T lymphocytes, B lymphocytes, monocytes and
natural killer cells. Most subjects with MMc in at least one
cell subset did not have detectable MMc in unfractionated
peripheral blood mononuclear cells. That MMc was
present in every hematopoietic cell subset tested suggests
that a maternal stem cell may engraft into the fetus, able
to renew multiple cell lineages throughout the life of the
child. What controls the level of MMc is not known. Preg-
nancy may affect the level of MMc, and may partially
explain the lack of MMc in the younger women studied,
who may not have ever been pregnant. In a small subset
of patients, MMc was found in 45% of parous women,
compared to 22% of nulliparous women. Thus, the same
immunoregulatory mechanisms during pregnancy that
allow increases in fetal microchimerism may also allow
expansion of MMc.

The biological purpose of chimeric maternal cells is not
known, but some clues can be derived from characterizing
the phenotypes within tissues. We and others have discov-
ered that maternal cells can engraft into a child's tissues
[22,23]. We identified maternal cells in the thymus, heart,
liver, kidney, lung, and pancreas using the FISH assay for
X- and Y-chromosomes to identify female cells in tissues
from males with inflammatory and non-inflammatory
diseases [24]. MMc constituted 0.1 to 0.9% of parenchy-
mal cells. To simultaneously identify and characterize the
maternal cells, a technique was developed by which mul-
tiple phenotypic markers could be detected concurrently
with FISH in the same cells of a tissue section. As circulat-
ing stem cells can have multilineage plasticity [25,26], we
asked whether maternal cells can differentiate into tissue-
specific phenotypes in her progeny. Female (maternal)
cells within male tissues were characterized by simultane-
ous immunohistochemistry and FISH for X- and Y-chro-
mosomes. Maternal cells expressed sarcomeric α-actin in
the hearts of infants with neonatal lupus syndrome, indi-
cating they had differentiated into cardiac myocytes or
possibly fused with host cells [22]. Srivatsa, et al detected
female cells (presumed maternal) in the tissues of four
male newborns with congenital anomalies, but no
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inflammatory diseases, in the liver, thymus, thyroid and
skin, but not in the spleen [23]. A controlled study to
determine whether or not MMc is affected by inflamma-
tory conditions in tissues has not been performed. How
maternal cells function alongside host cells, and when all-
ogeneic antigens on maternal cells may be recognized and
attacked is not known.

How does transplantation chimerism compare to MMc 
and FMc?
Chimerism, the state of cells from two genetically distinct
individuals living within one body, can occur through
multiple mechanisms. Stem cell transplantation, whether
from bone marrow or peripheral stem cells, can lead to a
spectrum of chronic inflammatory diseases called chronic
GVHD [27-30]. Chronic GVHD has clinical similarities
with some autoimmune diseases, including systemic scle-
rosis (SSc), primary biliary cirrhosis (PBC), Sjögren's syn-
drome, and some features of systemic lupus
erythematosus (SLE) and myositis, although there are also
pathological differences [27]. The chances that a patient
will develop chronic GVHD are highly dependent upon
the HLA genes of the donor and host. Thus, insights from
transplantation chimerism contributed to the hypothesis
that microchimerism and HLA-relationships of host and
non-host cells are involved in spontaneously occurring
autoimmune diseases. Clinical similarities of chronic
GVHD and autoimmune disease are now considered in
the context of cell transfer between fetus and mother dur-
ing pregnancy. Comparison of fetal/maternal chimerism
to transplantation chimerism must, however, take into
account the significant differences in cell populations. In
the case of fetal and maternal microchimerism, foreign
cells are present at a frequency of less than 1%, in both
hematopoietic and organ-specific lineages. In contrast,
after stem cell transplantation, donor cells completely
replace the hematopoietic system and may also constitute
a small fraction of organ-specific cells.

Is MMc is found in some autoimmune diseases?
MMc in the newborn is likely benign or may be beneficial,
but may also transmit malignancy or cause GVHD [2,31-
34]. Just as stem cell transplantation can lead to loss of tol-
erance to self antigens [27,30,35], natural transfer of
maternal cells may lead to a child's loss of self-tolerance.
MMc has been found increased in association with some
autoimmune diseases. Long term MMc was first discov-
ered in the peripheral blood of SSc patients and healthy
subjects [17] and has since been identified in additional
SSc patients [20] and in the target organs and blood in
neonatal lupus syndrome (NLS) [22] and myositis
[18,19]. In an early study, maternal DNA was found to be
increased in prevalence and levels in patients with systemic
sclerosis. MMc was initially detected in DNA isolated from
peripheral blood mononuclear cells from 22% of healthy

controls and 72% of women with SSc (OR 9.3, p = 0.001)
[20]. The levels of MMc in the blood ranged from 0 to
68.6 gEq/million. The assay was then used to analyze
MMc in organs from a woman who died of systemic scle-
rosis. MMc was found in tissues that were targets of dis-
ease in this patient, but also in tissues that were not
involved. High levels of MMc were found in lung (757
gEq/million), heart (1489 gEq/million), spleen (466 gEq/
million), and pancreas (704 gEq/million). Lower levels of
MMc were also found in gut (39 gEq/million), and bone
marrow (48 gEq/million). That the levels of MMc were 10
to 20-fold higher in the tissues than in the blood suggests
that future studies into the mechanisms for the role of
maternal cells in inflammatory disease may be best
directed toward the parenchymal and immunological
cells within the target organs.

We investigated parenchymal MMc in the context of an
autoimmune disease that develops in utero, NLS [22].
Infants born to mothers with anti-SSA antibodies are at
risk for developing NLS, with the life-threatening compli-
cation of inflammation of the atrial-ventricular node lead-
ing to congenital heart block [36]. Maternal (female) cells
were detected and quantified in NLS and control male
heart tissues by fluorescence in situ hybridization (FISH)
for X- and Y-chromosome-specific sequences. In blinded
studies, maternal cells were found in 15 of 15 sections of
heart tissue examined from four NLS patients, ranging
from 0.025% to 2.2% of host myocardial cells. Maternal
cells were also found in two of eight control sections at
lower levels (0.05–0.1%). Because recent studies in trans-
plantation indicate that donor cells can differentiate into
somatic tissue cells, we asked whether maternal cells
transferred in utero have cellular plasticity. A small minor-
ity of maternal cells expressed the hematopoietic cell
marker CD45. Eighty-six percent of maternal cells
expressed sarcomeric α-actin, a specific marker for cardiac
myocytes. These results suggest that differentiated tissue-
specific maternal microchimerism can occur in the
neonate. Thus, semi-allogeneic maternal cells could be
the target of an immune response. Alternatively, maternal
cells could contribute to a secondary process of tissue
repair.

In older children, two groups have reported the presence
of female cells (presumed maternal) in muscle biopsies
from male patients with idiopathic myositis [18,19]. Age-
matched controls who had biopsies for other muscle dis-
orders carried significantly fewer female cells. Moreover,
MMc in the blood was also increased in myositis patients,
as detected by nested PCR assay for maternal HLA alleles
not shared with the patient [19]. MMc has also been dem-
onstrated in pityriasis lichenoides, where female cells in
the form of keratinocytes were found in skin biopsies
from males aged 2 to 13 years old [37]. No female hemat-
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opoietic or Langerhans cells were identified. The MMc in
the skin was found in 11 of 12 patients at an average level
of 99 per million host cells. Maternal cells were also found
in some controls, but the levels were much lower (5 per
million).

Two additional case reports have suggested that MMc may
be common in chronic idiopathic inflammatory disease.
In the first report maternal cells were found in an 11-year
old boy with dermatitis, sclerodactyly, myositis and hepa-
titis with features of SLE and dermatomyositis [38]. By
FISH for X- and Y-chromosomes, maternal nuclei were
found in blood and in muscle. A second case report
described a 21-year old man exposed to volatile chemicals
in a tire factory who developed lymphocytic infiltrates
and fibrosis in skin, lungs, and intestinal mucosa patho-
logically resembling chronic GVHD [39]. HLA typing
revealed that he carried a SSc-associated gene
DRB1*1104, but also had bi-directional compatibility at
all HLA Class II loci with his mother. Maternal cells were
found in his blood at a rate of 0.0017%. The patient also
had active T lymphocyte activity to his mother. In vitro
mixed lymphocyte cultures demonstrated a 2–3-fold
increase in CD4+ and CD8+ T lymphocyte activation to
maternal compared to unrelated donor antigen present-
ing cells, as demonstrated by increased HLA DR and CD25
expression. An environmental trigger has also been impli-
cated in an animal study in which fetal microchimerism
was found to be expanded and lead to sclerotic disease in
response to polyvinyl chloride administration[40]. Thus,
naturally-acquired maternal cells, normally present at a
low level tolerogenic to the immune system, may be acti-
vated by an environmental stimulus to proliferate and
expand in blood and affected tissues. At expanded num-
bers maternal cells would provide antigen levels adequate
to overcome the threshold for activation of the host
immune system. An alternative hypothesis suggests that
maternal T lymphocytes may be reactive to the child's
antigens.

T lymphocytes have been found in the affected skin of
localized scleroderma patients, but also antigen present-
ing cells and B lymphocytes. [41] Thus, it is not clear what
variety of allogeneic cell roles maternal cells may play in
the blood or tissues of children with autoimmune dis-
eases. MMc is not found in every suspected disease. Infan-
tile hemangioma, hypothesized to be placental-derived
maternal endothelial cells, was investigated for MMc. By
FISH for X- and Y-chromosomes, no female cells were
detected in hemangiomas from eight patients, although
the amount of tissue assayed was not clear, and may have
been too low to detect rare maternal cells [42].

Only one other functional study of MMc has been
reported [43]. Chimeric maternal T lymphocytes were iso-

lated from myositis patients and shown to react to the
child's cells in vitro by producing IFN-γ. Maternal cells iso-
lated from siblings did not react to the sibling's antigen
presenting cells. Thus, although cells may change through
culture conditions in vitro, maternal T lymphocytes may
be recognizing the child's cells expressing non-shared
MHC Class I or Class II molecules in vivo.

How does the immune system tolerate MMc?
Why the host immune system does not eliminate alloge-
neic maternal cells is not known. The persistence of mater-
nal cells in a child implies tolerance to maternal antigens,
but studies thus far have demonstrated both tolerance and
immunity. Tolerance to maternal antigens has been dem-
onstrated in models of heart and skin allografts in the
mouse. Maternal T lymphocytes in the lymph nodes,
transferred either in utero or through nursing, have been
correlated with maternal skin graft survival [44]. An inde-
pendent study demonstrated a 40–90% reduction in
splenocyte production of IL-2, IL-5, and INF-γ in response
to antigen presenting cells expressing maternal MHC anti-
gens in vitro [45].

In humans, T cell reactivity to maternal antigens has been
reported to be decreased in vivo, allowing increased
engraftment of maternal tissues when compared to semi-
allogeneic family or unrelated donors in some, but not all
studies [46-48]In vitro studies have shown that although
peripheral T lymphocyte reactivity to maternal antigens
can be detected, it is reduced in some circumstances com-
pared to reactivity to unrelated antigens [49-51] but not
others [52,53] Moreover, the subset of cells responding to
maternal antigens has been shown to be different from
the cells responding to paternal antigens [54]. Whereas
cells responding to paternal stimulator cells were enriched
for CD3+/CD8high cells, typical of allogeneic cytolytic T
lymphocytes (CTL), responders to maternal stimulators
were enriched in CD3-/CD8dim cells, a phenotype typical
of natural killer (NK) cells. Thus, there is evidence for
CD8+ lymphocyte tolerization to maternal cells, but the
mechanisms involved are not known. B cell tolerance has
been found in patients after multiple blood transfusions,
but it is not known whether the B cells are directly toler-
ized by maternal antigens, or lack T cell help from toler-
ized T lymphocytes [55,56].

Alloreactive CTL and NK cells are crucial for the elimina-
tion of foreign cells after solid organ or stem cell trans-
plantation [57]. NK cells, abundant in fetal blood, would
be inhibited by HLA Class I molecules on maternal cells
that are shared by the child, preventing elimination of
MMc [58]. T lymphocytes, however, would be expected to
react to maternal HLA molecules not inherited or shared
by the child. The fetal immune system has been assumed
to be too "immature" to reject maternal cells [59], but
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recent studies suggest that fetal CD8+ T lymphocytes can
develop specificity in utero [60]. Anti-maternal CTLs
would therefore be expected to eliminate maternal cells.

Thus, mechanisms for developing tolerance to maternal
antigens are not known, but thymic selection may be
involved [61]. Donor dendritic cells engrafted into the
thymus of the recipient can mediate renal allograft toler-
ance through clonal deletion of alloreactive thymocytes
[62]. Moreover, intrathymic renal cells have delayed
murine SLE nephritis [63]. Although the peripheral versus
central mechanisms of tolerance remain to be explored,
preliminary evidence suggests that maternal cells in the
thymus may play a role in establishing central tolerance to
maternal antigens [64].

How do MHC alleles affect MMc and autoimmunity?
MMc is often found in healthy individuals. Therefore, if
MMc has the potential to become pathogenic, additional
environmental or genetic factors must be involved. The
case of the tire factory worker suggests an environmental
effect may activate immune responses to MMc [39]. The
MHC may also play a role. MHC antigens direct an indi-
vidual's ability to distinguish self antigens from foreign
antigens. MHC molecules of donor and recipient deter-
mine transplantation tolerance. Each HLA class II mole-
cule has two chains, α and β. HLA class II typing defines
alleles (variant forms) of DQA1 and DPA1 (the genes that
encode the α chains) and DRB1, DQB1, and DPB1 (the
genes that encode the β chains). There is virtually no pol-
ymorphism (variability) of the DRα chain. Specific HLA
alleles, especially DRB1 and DQA1, have been associated
with autoimmune diseases [65]. Because microchimerism
is associated with autoimmunity, the question arises: do
particular MHC alleles affect the persistence or levels of
MMc? One MHC class II allele, HLA DQA1*0501, has
been associated with increased FMc and MMc in both the
mother and the child [43,66]. How DQA1*0501 predis-
poses an individual to increased microchimerism is not
known. In the mouse, fetal-maternal MHC compatibility
has been suggested to mildly increase levels of MMc [67].

Because MHC Class II compatibility between donor and
recipient is important in human GVHD as well as in a SLE-
like GVHD in mice [68,69], we compared HLA compati-
bility between 30 male SLE patients and their mothers to
76 healthy males and their mothers [70]. Compared to
controls, men with SLE had increased bi-directional com-
patibility (identical HLA alleles) with their mothers in
HLA DRB1 allele families (OR 5.0, p = 0.006). The iden-
tity was also increased for specific DRB1 alleles (OR 4.0, p
= 0.05). When analysis was limited to males who had SLE-
associated HLA genes (encoding DR2 or DR3), there was
an even greater increase in identity between SLE patients
and their mothers in DRB1 families and DRB1 variant

alleles (OR 7.2, p = 0.01 and OR 15, p = 0.018). The
patients with SLE-associated HLA alleles also had
increased compatibility with their mothers at DQA1 and
DQB1. Whether this HLA matching allows MMc to persist
at levels high enough to activate host T cells, or rather
leads to cross-presentation of minor antigens remains to
be discovered. It is not known whether maternal-fetal
sharing of disease resistance alleles increases the protec-
tion from disease in healthy individuals who maintain
normal levels of chimeric cells. Compatibility at minor
histocompatibility antigens, also important for transplan-
tation tolerance, has not been investigated in autoim-
mune diseases.

What are additional sources of microchimerism derived 
during pregnancy?
In addition to cells from the mother, microchimerism
could be derived from an older sibling, from a twin, or
from a blood transfusion. Cells from an older sibling
could persist in the mother for years after birth, and then
be transferred to the fetus in a subsequent pregnancy.
Because fetal cells transfer into the mother in the first
weeks of gestation, spontaneous abortion (recognized or
not) may lead to chimerism in a woman, which then
could be transferred to the next fetus. Evidence for older
sibling microchimerism is inconclusive so far. Twin-twin
transfusion, however, has been established and occurs in
up to 8% of twin pairs and 21% of triplet pairs [71]. Cells
from a twin may completely replace the hematopoietic
system [72]. The vanishing twin phenomenon, which
may occur without recognition by mother or obstetrician,
allows for the possibility of twin chimerism even in sin-
glet pregnancies [73]. Blood transfusion can also lead to
Mc. Transfusion after trauma-related hemorrhagic shock
led to persistence of donor cells for at least 6–18 months
[74,75]. In one study donor cells expressed CD4, CD8,
CD15, and CD19, suggesting chimerism with a multipo-
tent stem cell [74]. Transfusion-associated GVHD can also
occur, with increased risk dependent on MHC compatibil-
ity of donor and host. [76] Thus, future studies of immune
tolerance and autoimmune disease may consider the con-
tributions of transfusions and maternal allogeneic anti-
gens as well as paternal antigens that may be transmitted
through older siblings or twins.

Can animal models be used to study MMc?
Animal models are essential for investigations into the
mechanisms of MMc regulation and treatments that may
target MMc. There is evidence that in newborn mice MMc
is a common phenomenon. In immunodeficient mice,
MMc has been detected in hematopoietic organs (bone
marrow, spleen, liver, lymph nodes, and thymus) and
also non-lymphoid organs (heart, brain, and lung) [77-
79]. Maternal cells were found as early as 12 days gesta-
tion, first in the thymus then later in other organs [77,79],
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and persisted as long as 24 weeks after birth [78]. In
immunocompetent animals maternal cells have not been
detected until later in gestation (day 16), and then mainly
in the bone marrow and spleen [44,45,67,80-84]. Mater-
nal cells may pass through the placenta into the fetus dur-
ing pregnancy and may also be transferred through breast
milk to the newborn pup [45,78,83]. Persistence of MMc
after birth may depend on oral tolerance to maternal anti-
gens transmitted through breast milk [45]. The levels of
persistent MMc in brain and lymphoid tissues may be
influenced by MHC compatibility of mother and pup
[67]. Chimeric maternal cells have been shown to be func-
tional, producing immunoglobulin, but do not regenerate
the immune system for immunodeficient animals [78].

The mouse is a poor model for events occurring during
human pregnancy, because of the physiological, immu-
nological and anatomical differences between species
[85,86]. For example, the placental hormone chorionic
gonadotropin, which has an essential role in establishing
and maintaining human pregnancy, is not produced by
the mouse placenta. The mouse placenta is labyrinthine
and hemotrichorial (three cell layers lay between mater-
nal and fetal circulation: two layers of trophoblasts and
one layer of syncytiotrophoblasts), whereas human pla-
centa has villi and is hemochorial (containing only one
layer of trophoblasts). Theoretically, the thinner barrier
between maternal and fetal blood supplies in the mouse
could lead to increased maternal-fetal cell transfer after
injury or inflammation, but this is not known. In addi-
tion, most mouse models are inbred strains with
homozygous and/or limited major histocompatibility
(MHC) haplotypes, whereas in humans maternal-pater-
nal MHC disparity is common, perhaps even required for
successful pregnancy [87]. Many of the mouse chimerism
studies were performed by blastocyst transfer rather than
natural pregnancy, which may affect maternal-fetal cell
trafficking [79-82]. As the mechanism of maternal-fetal
cell transfer is not known, the influences of placental and
genetic differences between humans and mice on the lev-
els or pathogenicity of MMc cannot be determined. MMc
has not been studied in other animals to my knowledge.
FMc has been studied in pregnant non-human primates,
where trends resemble those in humans, with increases
during pregnancy and a rapid decrease after pregnancy
[88]. How long FMc or MMc persists in primates, and how
the primate immune system tolerates MMc is not known.

Summary
MMc is commonly present in tissues and blood of
patients with autoimmune disease. MMc is also found in
healthy individuals, although at lower levels in some
studies. The original hypothesis was that chimeric mater-
nal or fetal T lymphocytes responding to host antigens led
to chronic inflammation in a manner similar to GVHD,

where maternal lymphocytes reacted to host antigens. The
low frequency of maternal cells and the findings that
maternal cells can differentiate into multiple hematopoi-
etic and somatic cells suggests alternative hypotheses.
Chronic inflammation may occur by host T lymphocyte
activation in response to maternal cells within tissues.
Injury or infection may upregulate maternal HLA expres-
sion, allowing the antigen load to exceed the T cell activa-
tion threshold for the otherwise tolerized host. The loss of
tolerance to maternal antigens may extend to self antigens
through epitope spreading, as after hematopoietic stem
cell transplantation. Studies into the functional capabili-
ties of maternal cells will be essential in understanding the
biological significance of MMc in health and autoimmune
disease.
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